工业控制 | 能源技术 | 汽车电子 | 通信网络 | 安防监控 | 智能电网 | 移动手持 | 无线技术 | 家用电器 | 数字广播 | 消费电子 | 应用软件 | 其他方案

电路设计->综合电路图->综合电路图->HFSS三种辐射边界的区别与选择技巧

HFSS三种辐射边界的区别与选择技巧

作者:angelazhang时间:2016-02-24

概述:

众所周知,HFSS里面的吸收边界条件有3个,分别是Radiation(ABC)、PML和FE-BI,那么这三个边界的应用有什么区别?应该怎么应用呢?今天小编在这里给大家好好分析一下。

Radiation边界(ABC):

— 计算天线等强辐射问题时,距离辐射体应当至少λ/4;

— 对于弱辐射问题,仅考虑辐射损耗,不关心远场时,可以小于λ/4;

— 在定义辐射边界条件的面上积分得到远场辐射方向图(默认),也可以自行定义计算远场时的积分面(建立Facelist);

— 辐射边界条件上的网格密度对于天线辐射特性的计算精度有影响;

— 辐射边界条件的吸收性能与入射角相关,入射角大于40 度时,吸收效果明显降低。

Radiation边界与入射角的关系如下图:

Radiation边界与辐射体距离的关系如下图:

由上图可以看到,Radiation边界与波的入射角度和辐射体距离都有很大的关系,对仿真结果的影响比较大。

PML边界:

— 到辐射体的距离可以是λ/20 ,也能很好吸收;

— 对于需要求解远场方向图的场合,距离辐射体λ/4仍然是必要的;

—PML表示无限大的自由空间,吸收辐射出来的电磁场,真正零反射;

— 计算远场时,软件自动将PML的基准面定义为积分表面,以便得到远场方向图;

— 可以替代Radiation边界条件,并且更精确。

PML边界与入射角的关系如下图:

PML边界与辐射体距离的关系如下图:

由上图可以看到,PML边界与波的入射角度和辐射体距离的关系都不是很大,对仿真结果一致性较高。

FE-BI边界:

— 专门针对电大尺寸的开放结构仿真;

— 对辐射体距离没有要求;

— 能够完全吸收所有的入射波;

— 与结构的共形性非常好;

— FE-BI算法可以有效降低计算机硬件资源消耗;

— 针对外部辐射空间采用IE求解,针对金属结构体采用FEM求解,大幅减少辐射区域的求解规模,提升求解效率。

FE-BI边界与入射角的关系如下图:

FE-BI边界与辐射体距离的关系如下图:

由上图可以看到,FE-BI边界与波的入射角度和辐射体距离的关系都不大,仿真结果一致性非常好。

总结:

— PML边界是公认的精度最高的吸收边界条件;

— FE-BI边界是电大尺寸开放结构(尤其是带介质腔体)常用的吸收边界条件;

— 对于一些需要快速求解的应用,可以使用普通的Radiation吸收边界条件;

— 通过调整积分面设置,可以改善Radiation吸收边界下的仿真结果精度。

最后对三种辐射边界条件的区别总结归纳如下表:


关键词: HFSS Radiation

评论

技术专区