工业控制 | 能源技术 | 汽车电子 | 通信网络 | 安防监控 | 智能电网 | 移动手持 | 无线技术 | 家用电器 | 数字广播 | 消费电子 | 应用软件 | 其他方案

电路设计->控制电路图->电机控制专区电路图->工业电机驱动中的栅极驱动和电流反馈信号隔离

工业电机驱动中的栅极驱动和电流反馈信号隔离

作者:fanxiaoxi时间:2023-01-10

二十多年来,电动机能效一直是全球能源监管机构关注的焦点。这是通过提高电力使用效率和使用可再生能源转换一些能源来实现最大限度减少碳排放的全球努力的一部分。早期的运动效率法规是自愿的,但很快,这些法规成为强制性要求,最低效率水平每五到十年增加一次。鼠笼式感应电动机(SQIM)自电力普及以来一直是业界的主力,因为它可以在直接连接到三相交流电源时启动和运行。当前的IEC标准根据额定功率对这些电机的效率进行了分类,其范围从标准效率(IE1)到超高效率(IE4)。今天,IE3的高效率水平在世界上最大的工业区域(包括欧盟,美国,中国和日本)是强制性的。工厂运营商并没有抵制这种变化,因为电机的资本成本只是电机寿命期间电力成本的一小部分。即使在更换具有15kW超高效率IE4电机的高效电机的情况下,也可以在两年内节省额外成本。电机效率要求的这种趋势已经使许多设备制造商从直接离线电机转向基于逆变器的解决方案。这些解决方案的各种体系结构,以及它们的驱动和信号隔离要求是本文讨论的主题。

到目前为止,SQIM制造商已将更严格的效率法规视为市场机遇。与标准效率电机相比,高级和超高效电机在材料,设计和制造方面的成本更高,但它们的市场价格更高。然而,新的IEC效率分级IE5和IE6的开发将给电机制造商带来问题。电机专家认为,设计线路连接SQIM以达到高于IE4的效率水平将是非常困难和昂贵的,特别是在较低功率范围内(de Almeida)。最有可能的是,只有逆变器连接的电机才能满足IE5和更高的效率水平。永磁同步电机(PMSM)传统上被选用于超高效应用,但是稀土转子磁铁的成本和可用性是一个问题。使用铁氧体磁铁或为支持不断增长的电动车市场而开发的新磁性材料的新型轴向电机设计可以缓解这些问题。IE5效率等级驱动器(ABB)也正在认真考虑同步磁阻电动机(SRM)。SRM既没有转子绕组也没有磁铁,与同等额定功率的等效SQIM相比,它以更低的成本和框架尺寸支持高效率。

逆变器和隔离

这种更高效电机的趋势正在增加对基于IGBT的变频器的需求,该变频器将整流的电源输入转换为驱动电机的可变频率电压。变频器控制的电机具有与轴负载最佳匹配的输出扭矩或速度,以最小化能量消耗,降低电机运行温度并提高电机可靠性。增加的价值控制功能,如状态监测,电能计量和工厂网络连接,可提高过程效率和可靠性。隔离技术是驱动系统中的关键元件,因为它可以安全地将控制器用户界面与连接到逆变器的危险高压隔离开来。

几个高级别因素会影响给定驱动器中的隔离要求和架构;这些包括电机驱动器性能水平,通信接口的复杂性,控制器架构以及系统中遇到的电压水平,如图1所示。




图1.整合的电机控制架构。

在许多情况下,关键隔离节点是栅极驱动器和电机相电流感测电路。两个位置都涉及以切换的高电压电平为参考的受控或测量信号,并且必须至少包括某种形式的电平移位,并且在许多情况下包括隔离(功能或安全)以便应用或提取接地参考信号。

这在图2的概念示意图中示出,其描绘了单个逆变器相臂,其中指示了高侧栅极驱动器信号和相电流分流测量信号的电平移位和电位信号隔离要求。




图2.三相逆变器支路中的信号参考。

隔离门驱动器

从图2中还可以看出隔离栅极驱动器的基本要求。这些要求包括逻辑电平开关信号的功能或安全隔离,以及能够驱动IGBT栅极电压超过导通和关闭阈值的输出驱动器。在所需的时刻切换IGBT,最大限度地减少器件导通损耗,开关损耗和EMI产生。在三相逆变器中,IGBT被反相控制,使得高侧和低侧IGBT永远不会在一起,即使在短时间内也是如此。这需要在高侧和低侧开关信号之间插入一个小的死区时间。在系统性能和IGBT保护(OSullivan)的背景下,最小化这个死区时间至关重要。

IGBT导通需要将IGBT驱动到饱和区域,在此处导通损耗将最小化。这通常意味着导通电压> 12 V. IGBT关断需要将IGBT驱动到工作的截止区域,这样一旦高端IGBT导通,它就能成功阻断其上的反向高压。原则上,这可以通过将IGBT栅极发射极电压降低到0V来实现。但是,当高侧晶体管导通时必须考虑次要影响。开关节点电压的快速转换导致瞬态感应电流流入低侧IGBT寄生米勒电容(图3中的CGD)。该电流流过低侧栅极驱动器(ZDRIVER)的关断阻抗如图3所示,在低端IGBT栅极发射极端子处产生瞬态电压反弹,如图所示。如果此电压超过IGBT阈值电压VTH,则可能导致低侧IGBT短暂导通,导致逆变器支路瞬间射穿,增加功耗并降低可靠性。




图3. IGBT开关中的米勒效应

通常有两种方法来解决逆变器IGBT的感应导通 - 使用双极电源和/或增加米勒钳位。在栅极驱动器的隔离侧接受双极电源的能力为感应电压瞬变提供了额外的裕量。例如,-7.5 V的负电源轨意味着通常需要> 8.5 V的感应电压瞬变来引起虚假导通。这通常足以防止虚假开启。一种互补的方法是在完成关断转换之后的一段时间内减小栅极驱动器电路的关断阻抗。这被称为米勒钳位电路。电容电流现在流入较低阻抗电路,从而降低了电压瞬变的幅度。通过利用非对称栅极电阻器来导通和关断,可以提供控制开关速率的额外灵活性。所有这些栅极驱动器功能都对整个系统的可靠性和效率产生积极影响。

电动机驱动器中的过电流保护通常在几个级别上实现。持续过电流和瞬态过电流之间的区别可以包括在驱动保护方案中,并且这些过电流事件具有不同的跳闸水平和时间常数。这种过流保护通常基于电流测量来实现。对于非常快速且可能发生灾难性的过流事件,例如逆变器输出上的短路,在栅极驱动器内集成快速动作保护机制可能是有利的。通过在IGBT导通时监控IGBT集电极发射极电压来实现去饱和保护。当IGBT饱和时,导通状态电压是IGBT内电流水平的函数,并且该保护功能可以设计为触发故障并且一旦导通状态电压增加超过可接受的水平就快速关断IGBT。存在短消隐时间,在此期间保护电路不监视IGBT的导通状态电压。这包括在开启事件期间由于集电极发射极电压转换和/或瞬态过电流而在开启时防止误触发。

该ADUM4135ADI公司的隔离栅极驱动器具有双极性电源,米勒钳位和非对称导通和关断输出。此外,传播延迟以及更重要的传播延迟偏差分别是业界领先的50 ns和15 ns的典型值。减少死区时间的系统影响如图4所示,其中描述了两个不同死区时间的逆变器输出线到低电机速度的线电压。与光耦合器技术相关的死区时间要求增加导致电机电压和电流失真增加。这降低了转矩脉动和振动增加的性能,以及由于增加的谐波损耗而降低的效率。这些失真效应在逆变器应用中尤为明显,




图4.在(a)500 ns死区时间(b)1μs死区时间测得的线电机电压。

隔离电流感

电机相电流检测节点连接到与栅极驱动器输出相同的电路节点,如图2所示,用于基于分流的测量。因此,它们经历相同的隔离电压和开关瞬变。相电流检测对于高性能闭环电机控制至关重要,在这种恶劣的电噪声环境中实现高保真测量并非易事。在高功率系统中,使用隔离电流传感器,如电流互感器或霍尔效应传感器,其中隔离是固有的,而在低功率系统中,趋势是使用具有隔离Σ-Δ调制器的分流电阻,如AD7403来自ADI公司。前面的系统通常使用去饱和栅极驱动器功能来实现所概述的短路过电流保护,而后一种基于调制器的隔离电流感测方案可以通过快速粗略的数字滤波器(OByrne)直接实现这一点。
这要求精确定时既为在栅极驱动器的分离的调制器响应和低的传播延迟,这模拟器件
成色®技术使,而传统的基于光电耦合器的解决方案趋向于从较长的传播延迟之苦。

监管环境

一旦开发出满足所需性能的驱动器架构,系统必须符合行业电气安全标准。了解栅极驱动器和电流检测节点上提出的隔离要求以选择合适的隔离元件至关重要。每个节点可以是安全隔离(加强),基本绝缘或功能绝缘。任何单个节点的要求可以是安全绝缘以防止人体冲击,或隔离以保护低压电路,或隔离以实现数据完整性和噪声缓解目的,如图1所示。系统级要求可通过以下方式实现:多个绝缘屏障。IEC61800-5-1是一种长期的系统级电机驱动标准,驱动器设计必须遵守该标准以保证系统绝缘。

无论标准如何,它都不涉及组件的评估。IEC61800-5-1建议可以使用支持系统标准要求的组件级标准。IEC60747-5-5针对基于光耦合器的元件,而VDE-0884-10是IEC60747-5-5的非光隔离器版本,自2006年以来一直致力于数字隔离器.VDE-0884-11自2014年开始并获得批准寿命表征要求。这已经提交IEC作为IEC60747-17批准,通常有三年周期。在此期间,VDE-0884-11可作为IEC等效标准,如图5所示。




图5. nonoptoisolator标准的演变。

结论

关于电机能效的新国际法规正在加速从固定速度,直接在线感应电机到逆变器控制机器的过渡。一个常见的要求是IGBT栅极驱动和某种形式的电流测量,至少可以在简单的开环逆变器中进行保护,直至驱动器和伺服系统中的高保真电流控制。这些电路的技术要求越来越关注时序和测量的精度,以及可靠性和稳健性。信号隔离是监管框架内实施和寻址系统设计的关键挑战。



关键词: 电机控制

评论

技术专区