工业控制 | 能源技术 | 汽车电子 | 通信网络 | 安防监控 | 智能电网 | 移动手持 | 无线技术 | 家用电器 | 数字广播 | 消费电子 | 应用软件 | 其他方案

电路设计->线性放大电路图->滤波器电路图->高频数字抽取滤波器的设计

高频数字抽取滤波器的设计

作者:fanxiaoxi时间:2022-10-14

设计了采样频率为640 MHz、过采样率为64的高频数字抽取滤波器。该数字抽取滤波器由CIC(Cascaded Integrator Comb)滤波器(降16倍)、CIC补偿滤波器(降2倍)和半带滤波器(降2倍)组成。为了实现高频工作,CIC滤波器采用两级结构,第一级采用多相分解技术,使大部分结构工作在较低时钟频率下,极大地降低了CIC的功耗,第二级采用传统结构。CIC补偿滤波器使信号通带平坦,半带滤波器满足了阻带的衰减要求。为了验证数字滤波器的性能,搭建了四阶前馈—反馈结构ΣΔ调制器,作为数字抽取滤波器的输入,最终在输入信号频率为0.5 MHz时,数字抽取滤波器输出的信噪比为97.40 dB。

0 引言

数字抽取滤波器是ΣΔADC(ΣΔAnolog-to-Digital Converter)的重要组成部为分,旨在从高速、低分辨率的调制信号中重构出高分辨率、奈奎斯特频率的信号。为节约硬件资源,同时满足通带纹波和阻带衰减等要求,数字抽取滤波器一般采用CIC滤波器、CIC补偿滤波器、半带滤波器三级级联方式构成[1]。本文在此结构的基础上,对CIC滤波器部分进行优化,通过级联结构和多相分解技术,最终有效地降低了CIC滤波器的功耗,提升了滤波器的运算速度。

为更好地验证数字抽取滤波器的性能,本设计的输入信号由ΣΔ调制器产生。根据640 MHz采样频率和64倍降采样率,计算得到调制器最小阶数为四阶。经过单环、级联结构的对比分析,最终选用四阶单环前馈-反馈ΣΔ调制器。即在单环ΣΔ调制的基础上,将第四级积分器的输入和输出端分别引入前馈和反馈,同时让反馈回路作为第三级积分器的输入[2]。在MATLAB中,使用0.5 MHz信号对该调制器进行验证,调制器的输出信噪比为114.7 dB。

本设计的数字抽取滤波器的目标参数为:信号带宽5 MHz,输入信号频率0.5 MHz,采样频率640 MHz,过采样率为64,输出信噪比90 dB以上,通带纹波不大于0.01 dB。

1 CIC滤波器的设计

1.1 传统CIC滤波器

CIC抽取滤波器是一种线性相关的FIR(Finite Impulse Response,FIR)滤波器,滤波器系数均为1,结构组成只有积分器、寄存器和加法器,省去了乘法器,有效降低了硬件开销和电路复杂度。

降采样率为M,阶数为N的CIC滤波器的z域传输函数为[3]:

根据传输函数得到图1的滤波器结构图,此为传统递归结构。

传统结构的CIC滤波器由两部分组成:第一部分为积分器,第二部分为差分器。可以看到,所有积分器都工作在最高采样频率下,导致了传统结构功耗的增加。

芯片版图尺寸主要由寄存器个数及位数决定,字长大消耗硬件资源多,所以CIC滤波器的输出数据位数增长也是需要关注的一个方面。降采样率为M,阶数为N的CIC滤波器输出数据位数由Nlog2M+Bin决定,Bin为调制器输入位数。

1.2 多相分解CIC滤波器

为有效降低功耗,应使滤波器工作在低采样频率下,即让抽取步骤在整个CIC滤波器的最前端完成,这就需要对CIC滤波器的传输函数进行多相分解[4]。

下面以N=3、M=4为例,对分解步骤进行说明,由分解后的图2可得采样频率降低为fs/4。

该结构中的系数相乘可以通过移位相加实现,因此只需要延时器(寄存器)和加法器,消耗资源少。通过多相分解,在一开始就进行降采样,使后级都工作在较低的时钟频率下,有效降低了功耗。


关键词: 滤波器

评论

技术专区