工业控制 | 能源技术 | 汽车电子 | 通信网络 | 安防监控 | 智能电网 | 移动手持 | 无线技术 | 家用电器 | 数字广播 | 消费电子 | 应用软件 | 其他方案

电路设计->综合电路图->消费电子电路图->基于ADAS的无线接口电路设计 —电路图天天读(39)

基于ADAS的无线接口电路设计 —电路图天天读(39)

作者:dolphin时间:2017-04-06

  汽车轮胎压力监测系统(TPMS)主要用于汽车行驶时对轮胎气压进行实时自动监测,对轮胎漏气和低气压进行报警,以保障行车安全。目前最流行的 PSBTPMS系统,是利用安装在每一个轮胎里的压力传感器来直接测量轮胎气压的,并对各轮胎气压进行显示及监视。当轮胎气压太低或有渗漏时,系统会自动报警。就TPMS系统构造而言,其采集的温度压力数据需要通过一种无线方式进行发送和接收,而且该收发电路要安装在轮胎里。这就必须要求其组成电路的芯片能够耐高温。要解决这两个问题,可以利用Motorola公司研制的发射芯片MC33493和接收芯片MC33594。该两款芯片都达到了汽车级温度完全可以解决耐高温的问题,且工作性能极好。它们与单片机一起构成的接口电路成为TPMS系统中无线数据传输的重要组成部分。

  TPMS系统主要由安装在汽车轮胎内的压力、温度传感器,信号处理单元、RF发射器组成的TPMS发射模块,安装在汽车驾驶台上的包括数字信号处理单元的RF接收器以及LCD组成。一般情况下,一辆轿车需要4个TPMS发射模块和1个TPMS接收器;而一辆卡车需要6~12个TPMS发射模块。为了提高系统的接收能力和抗干扰能力,系统安装时需要在汽车底盘安装接收天线。由SP12传感器、微控制器、MC33493发射模块、MC33594接收模块等主要芯片组成的TPMS系统方案结构框图如图1所示。

  温度压力传感器将采集到的温度压力数据通过I2C总线或RS232接口送到单片机,单片机发送一使能信号ENABLE给发射器。当为高电平时,发射机开始工作,产生一个数据时钟信号给单片机,用于信号的同步。此时,单片机发送数据给发射机,发射机将得到的数据通过天线发射出去。接收机通过天线接收到信号后,首先置RESET引脚为一低电平,此时微控制器为主机,通过MOSI线来设置作为从机的接收器内的寄存器,设置好以后置RESET脚为高电平。此后微控制器为从机,而接收器就变为主机。它产生时钟信号,通过MOSI线将接收到的数据发送给单片机。此时单片机通过SPI接口与PC机实现简单的连接,以达到在PC机上显示报警的作用。

  无线射频接收芯片MC33594

  摩托罗拉的MC33594器件是高温集成UHF超外差无线电接收模块。该芯片采用LQFP-24封装,工作频率在300~450MHz频段,电压在4.5~5.5V范围内;接收灵敏度高达-103dBm。芯片最大的特点是带有一串行外设接口SPI(Serial Peripheral Intelface)。通过SPI,它允许CPU与各种外围接口器件以串行方式进行通信,交换信息。SPI接口使用四条线:串行时钟线(SCK),主机输入/从机输出数据线MISO,主机输出/从机输入数据线MOSI和低电平有效的从机选择线RESET。

  

  TPMS系统设计中较关键的一点是数据的传输部分。整个数据传输部分由两部分组成:一是驾驶室中的无线接收部分,另外一部分是轮胎中的无线发射部分。这两部分数据传输的准确性、稳定性,将是系统优良性能的重要体现。

  无线发射电路由发射芯片MC33493、AT89C2051单片机和电平转换电路构成,如图2所示。发射模块中,引脚3(BAND引脚)接3V高电平,表示系统发射频率为434MHz,用于选择工作频率;引脚 14(MODE引脚)接高电平,表示系统选择FSK调制模式。FSK调制方式定义为一个信号的两个不同的频移值分别表示数字高、低两种电平。在这个系统中,低频移表示数字高电平,高频移表示数字低电平。发射芯片的FSK调制方式由与晶振串联的下拉负载电容C1来实现。与CFSK引脚相连的有一内部开关,用以选通下拉电容C1。当DATA=O时(MODE引脚置高电平),开关关闭,此时输出高频移;当DATA=1时,开关接通,此时输出低频移,这就实现了 FSK调制方式,也就是说,如果载波频率是433.92MHz而且总的频偏是士△f(MHz),则数字高电平表示为433.92MHz-△f,数字低电平表示为433.92 MHz+△f。

  由于MC33493工作电平最大为3V,而微控制器89C2051工作电平最大为5V,要实现连接就必须进行电平转换。系统供电为5V,通过电平转换电路为发射芯片供电。其发射芯片MC33493通过电平转换芯片与单片机相连,实现数据的双向传送。它与89C2051单片机及接收机一起构成无线数据发射系统。

欲了解视频监控相关解决方案与电路图设计,可关注电子发烧友荣誉出品的Designs of week栏目:




评论

技术专区