工业控制 | 能源技术 | 汽车电子 | 通信网络 | 安防监控 | 智能电网 | 移动手持 | 无线技术 | 家用电器 | 数字广播 | 消费电子 | 应用软件 | 其他方案

电路设计->检测电路图->检测其他电路图->湿度环境下关于薄膜电阻的稳定性测试

湿度环境下关于薄膜电阻的稳定性测试

作者:不爱吃窝瓜时间:2016-03-24

在以往的论文里,提到过薄膜电阻的阻值随时间变化而发生漂移的现象,描述的是在“干热”条件下发生的情况。然而,在相对湿度较高的地方或应用里使用电子设备时,对元器件的可靠性来说仍然是一个挑战。因此,行业标准AEC-Q200要求在偏置湿度测试85℃/ 85 % RH条件下,也要对无源元件进行测试。通过认证的薄膜电阻采用了适当的稳定R层和电绝缘漆,能够通过85 / 85测试。

会出现下面这些问题:

(1)通过1000小时的偏置85 / 85测试,对实际当中应用的薄膜电阻意味着什么?

(2)在一定的负载和环境条件下,是否有可能通过使用经过一定时间之后的85 /85测试数据或HAST数据,预测在最坏情况下的电阻漂移?

要回答这些问题和其他与测试有关的问题,我们对电阻在40°C / 93 % RH和85°C / 85 % RH的工作情况,以及常用的标准测试情况,进行了长时间的实验对比。在大约0.5%和10%的最大标定工作功率下,使用我们最灵敏的薄膜电阻层系统,将这些试验的时间延长到4000小时。除此以外,我们还进行了70°C / 90 % RH,90°C / 40 % RH,以及HAST130条件下的测试,对电阻的温度、湿度的线性度,以及电压对漂移的影响进行了研究。

本文将说明这个对比研究的结果,那些数据点使我们能够回答温度和电压的加速因子问题。这些成果将和现有的预测模型做对比。这些研究成果为设计出一个在整个温度-湿度-时间域内覆盖所有老化条件、系统特性和元器件健康预测的新模型提供了基础,

主要内容

开发和定义一个电子元器件的通用(偏置)湿度加速和长期预测模型,并将这个模型用于研究灵敏的薄膜电阻。

模型考虑了热和湿度对降级的影响,这样就可以在整个温度-湿度-时间域内做预测。

明确的ln√t– 1 / T框图包含了全部信息,使我们能够计算文中讨论的塑模/漆,以及功能层上所有相关材料的数据(活化能,湿度有关的材料特性,偏置电压加速效应等)。

老化/氧化和腐蚀之间是有区别的。通过将暴露时间标准化,替代被测参数的漂移,可以消除这些相互矛盾现象之间的不一致性。

通常用实际的当前蒸汽压做为明确的物理速率,替换相对湿度rh.在我们的模型里,rh的作用是估计扩散的实际速率。

分别找出电绝缘漆或塑模的扩散特性,做为温度和湿度影响元器件参数降级的主要因素。

1.引言

在前一篇论文里已经介绍了在最高到175℃的相对温度-时间-范围内的干热条件下如何预测漂移。主要发现是由阿伦尼乌斯定律推导出的随时间变化的现象,以及过程常量Tstab.在时间相关的阿伦尼乌斯等式基础上提出了预测模型,可以确保器件安全和可靠地工作,预计时间可以达到200000小时或20年以上。

对于工作在非常重要且十分恶劣环境条件下的应用,汽车行业对可靠性提出了更高的目标。除了在很多年前就已成为标准的40°C / 93 % RH测试,偏置85°C / 85 % RH测试已经成为标准认证和车用无源元件的强制要求。尤其是无源元件的相互作用和降级机理的细节还相当模糊。在很多研讨会和发布上,元器件制造商都表示85 / 85测试对他们的专用元器件来说太困难了(例如:AEC-RW 2012:Polymer-C; AEC-RW 2008:Tantalum-C,经过168小时的85 / 85测试)。

器件符合85 / 85对长期使用意味着什么(如17年的产品寿命,在标定电压下可工作5000到7000小时),汽车行业对此是一头雾水。因此对无源元件预测模型的问题和需求随之而来,尤其是电阻。既然Lawson等式还是预测有源器件的主流方法,有人会问,Lawson预测模型是否也适合电阻的潮湿老化和降级呢。

很多开放式的问题促使我们去重拾我们已经研究过和公开出版的薄膜电阻的预测方法,到目前为止,这些问题还没有合适的模型,能够检验该怎么把偏置湿度现象考虑进来,或者做得更好一点,能够整合进来。

2.偏置湿度:老化或腐蚀效应

测试表明,由于热尤其是潮湿条件的不同,过度潮湿测试的结果大相径庭。在潮湿环境中暴露1000小时后,试验结果的差异显示在图1中。

图1:试验结果的差别

这些事实包含了很多开放式问题:

。为什么测试温度仅仅增加45K,偏置湿度的影响会这么大?

。为什么薄膜电阻对偏置湿度的反应比干热更敏感?

。为什么更高的电压会导致更低的漂移?

。在偏置湿度测试中,降级的加速机制是什么?

。是否有合适的方法,能够估计和预测经过偏置湿度应力后的阻值漂移?

最初的85/85测试被设计成可以加速湿气渗透进非密封的IC封装,以便引发金属层里的腐蚀失效。在评估测试结果的时候,应当始终搞清楚,测试结果是由(可预测)的老化过程还是由(破坏性)的降级造成的。这样我们就可以彻底地区分氧化/钝化效应和腐蚀机制。图2显示了由这两种原因引起参数漂移的基本区别。

图2:氧化/钝化与腐蚀机制

3.深入研究的测试程序

我们的测试计划通盘考虑了下面这些因素:

。按照AEC-Q200(同一批次,对所有被测变体进行激光微调)的要求,使用认证过的灵敏的薄膜电阻阻值;

。比较偏置湿度85 / 85测试结果与40 / 93测试结果;

。引入70℃/90% RH和90℃/40% RH这两个中间测试状态;

。延长测试或暴露时间到4000小时(10000小时);

。使用两种不同的电绝缘漆;

。在每个变体上施加两种电压/负载(从额定电压的10%到30%,利用偏置湿度测试,按照标准车用元器件的要求进行认证);

。比较偏置测试和HAST 130(高加速应力测试:130℃和85%RH偏置湿度测试,相同的批次和电气状态)的结果。

很重要的一点是,两种漆都按照85 / 85(也就是说我们只按照行业标准对可用的样品进行了基本的研究)的行业要求经过了完整的认证和发布。另一个重点是必须从最灵敏的阻值范围内选取样品。图3显示了薄膜电子设计的临界边缘,可做借鉴。

图3:不同阻值的电阻层厚度

方形电阻R□的整个阻值范围使有三种合金(I,II和III)决定的。合金II采用的是CrNiX(X代表第三种元素)。1Ω~100Ω之间的R□是通过改变2μm到30nm的电阻层厚度来实现的。在氧化和腐蚀同时发生时,电阻层的改变会引发不同的效应。较厚的电阻层会出现表面或颗粒边界效应。相反,我们必须面对在薄电阻层上出现的体积效应,这种效应可以影响整个层的厚度。在氧化的情况下,所有电阻材料都会受到影响。在腐蚀的情况下,这会导致电阻层的彻底破坏。为了做试验,我们挑选了这类敏感的样品,保证样品会出现最坏的情况(电阻类型有MINI-MELF,MMA0204,最大阻值为180 kΩ,R□大约是800Ω)。

各个测量点是从20个测试样品的单一结果得到的。为了实现统计覆盖到全部事件(最坏情况)的98%,每个测试点的参数值的概率分布都进行了估值。

4.测试结果和主要发现

两种不同电绝缘漆和两个不同偏置电压的测试结果见图4.我们找到了两个明显的降级机理,可以区分老化(40 / 93,70 / 90)和破坏性的腐蚀状态(85 / 85)。

图4:在测试环境中暴露4000小时后的测试结果(40 / 93,70 / 90,85 / 85)

在这个阶段,还不能根据85 / 85测试数据做比较或预测。因此,为了使用可比较的数据,我们在0.07%到0.1%再到0.2%的ΔR / R低漂移水平上,提出了对所有阻值漂移进行标准化的方法。通过定义一个既明显但又几乎不会造成破坏的可接受且在标准要求内的漂移水平,我们就可以比较全部测试数据,另外还可以加上HAST 130的测试结果。标准化参数漂移的结果(在我们这个例子是ΔR / R)与相应的暴露时间参见图5.暴露时间的标准化的各个测量点要么是直接推导出来的,或是经过我们不同的湿度测试,从120个独立的ΔR / R漂移测量结果推算出来的。

图5:在非破坏性的ΔR / R水平上对测试结果进行标准化

每个参数的漂移从方方面进行了彻底的定义:幅度,系统/材料的关系,在规范内可接受的值,估计的元器件预期寿命。

对于180 kΩ的薄膜电阻,我们定义并选取ΔR / R of≤0.2 %(我们估计:只有颗粒边缘的氧化会改变电导率,在材料层上也没有体积效应)。

经转换后的第1种漆和第2种漆的测试数据见图6(在这个阶段,预估的RH设定值稍微有点差别,但没有关联)。尤其是在较低的温度下,漆的变化很明显。曲线可能匹配指数函数,但匹配度不是很好,尤其是第1种漆。

图6:比较两种漆的测试结果




关键词: 电绝缘漆 电阻层

评论

技术专区