工业控制 | 能源技术 | 汽车电子 | 通信网络 | 安防监控 | 智能电网 | 移动手持 | 无线技术 | 家用电器 | 数字广播 | 消费电子 | 应用软件 | 其他方案

电路设计->推荐公司电路图->ADI->利用数字电位计AD5292构建30 V低成本DAC (CN0111)

利用数字电位计AD5292构建30 V低成本DAC (CN0111)

作者:soothmusic时间:2012-10-21

电路功能与优势

图1所示电路采用digiPOT+系列数字电位计AD5292、双通道运算放大器ADA4091-2和基准电压源ADR512,提供一种低成本、高电压、单极性DAC。该电路提供10位分辨率,输出电压范围为0 V至30 V,能够提供最高±20 mA的输出电流。AD5292可以通过SPI兼容型串行接口编程。

图1:单极性DAC配置(原理示意图,未显示去耦和所有连接)
 

AD5292具有±1%电阻容差,因而可以与外部分压器电阻R3和R4串联,如图2和图5所示,以构建一个在缩小的输出电压范围内提供10位分辨率的游标DAC;这可以起到提高DAC灵敏度的作用,类似于增加一个与电位计串联的电阻。此外,AD5292内置一个20次可编程存储器,可以在上电时自定义输出电压VOUT

本电路具有高精度、低噪声和低温度系数输出电压等特性,非常适合数字校准应用。

电路描述

图1所示电路采用数字电位计AD5292、基准电压源ADR512和运算放大器ADA4091-2,提供一种10位、低成本、高电压DAC。本电路可保证单调性,微分非线性(DNL)为±1 LSB,积分非线性典型值为±2 LSB。

高压稳压器由低压基准电压源和后接的同相放大器组成,该放大器的增益由R1 与 R2的比值决定。1.200 V基准电压源ADR512具有低温度漂移、高精度和超低噪声性能。

确保ADR512最小工作电流的最大电阻值由公式1确定。



在图1和图2中,RBIAS电阻为12 kΩ,可将ADR512的偏置电流设置为2.4 mA。

图2:通过缩小输出电压范围并利用游标DAC来提高精度(原理示意图,未显示去耦和所有连接)
 

ADA4091-2是一款运算放大器,具有低失调电压和轨到轨输出。ADR512与ADA4091配合使用,可提供低温度系数和低噪声输出电压。

电阻R1 和 R2 用来调整放大器的增益。U1A的输出电压V1 决定DAC的最大输出电压(VOUT)范围。可以用公式2计算电阻值。



图1中,所选电阻值可提供23.1的增益和27.72 V的V1 值。可以用该电压为其它电路供电,最大输出电流为17 mA。

图3和图4分别显示典型的积分非线性(INL)和微分非线性(DNL)曲线。在图1所示配置中,AD5292采用比率式工作方式,这意味着总电阻容差的变化不会影响性能。

图3:INL与DAC码的关系
 
图4:DNL与DAC码的关系
 

为改善电路精度,可以用两个外部电阻降低AD5292上的基准电压,如图5所示,由此便可在有限的电压范围内提供全部10位分辨率(游标DAC)。数字电位计通常具有±20%的端到端电阻容差误差,由于数字电位计与外部电阻之间存在匹配误差,因此会影响电路精度。AD5292则具有业界领先的±1%电阻容差性能,有助于克服电阻匹配误差问题。

图5:通过降低基准电压来构建游标DAC,从而改善INL性能(原理示意图,未显示去耦和所有连接)
 

这种情况下:





缩小范围内的1 LSB可以通过下式计算:



相对于最高基准电压V1,游标DAC的等效分辨率为:

图6显示利用图5的游标DAC电路而获得的INL(以 V1为基准)曲线。

图6:游标DAC的INL(以V1为基准)
 

AD5292具有一个20次可编程存储器,可以在上电时将输出电压预设为特定值。

为了使本文所讨论的电路达到理想的性能,必须采用出色的布局、接地和去耦技术(请参考教程 MT-031 和教程 MT-101)。至少应采用四层PCB:一层为接地层,一层为电源层,另两层为信号层。

 

常见变化

AD5291 (8位、内置20次可编程上电存储器)和AD5293(10位、无上电存储器)均为±1%容差数字电位计,同样适合本应用。

4.096 V低成本基准电压源ADR5044也不失为一种选择。R1/R2比值可以根据不同的基准电压进行适当调整。


关键词: AD5292 30 V低成本DAC

评论

技术专区