工业控制 | 能源技术 | 汽车电子 | 通信网络 | 安防监控 | 智能电网 | 移动手持 | 无线技术 | 家用电器 | 数字广播 | 消费电子 | 应用软件 | 其他方案

电路设计->基础电路图->电子器件知识电路图->电子镇流器的半桥逆变电路的工作原理描述

电子镇流器的半桥逆变电路的工作原理描述

作者:dolphin时间:2011-05-11

电子镇流器的半桥逆变电路的工作原理描述:半桥逆变电路基本形式
图片:


图中三极管VT1、VT2组成有源半桥支路,
电容C7、C8组成无源半桥支路,半桥的中点电压为直流电压的一半,即为E/2,灯管作为负载与电感L2相串联,跨接在两个半桥中点之间。VT1、VT2是半桥逆变电路中的重要组件,起着功率开关的作用,选择时,应优先考虑其开关参数。其工作原理是:加上电源后,由直流电压VDC(E)提供的电流经R1对积分电容C5充电,一旦此电压达到并超过触发二极管VDB3的转折电压(约30~40V)后,该二极管击穿导通,并有电流流入VT2的基极,使VT2导通,此时,电流流经的路径为电源VC3→C7→灯丝→C6→灯丝→电感L 2→磁环变压器Tr的初级绕组N3→VT2的集电极→地。
VT2集电极电流的增长趋势在磁环变压器的初级绕组N3上产生感应电动势,同时在其次级(N1、N2)也产生感应电动势,其极性是使各绕组上用•表示的同名端为正,从而使VT2的基极电位升高,基极电流、集电极电流进一步加大,即在电路中产生如下的连锁反应:



这种连锁式的正反馈作用使VT2导通并饱和。顺便指出,在VT2导通后,电容Cs的电荷通过二极管VD。和晶体管VT2放电,其电压下降,不再使触发管导通,该支路也不再对VT2基极产生影响。所以,由R1、C5及VDB3提供的触发信号只在电源接通后对VT2起触发作用。在VT1、VT2轮流工作后,其工作频率较高,VT2截止时间很短,在这样短的时间内C5来不及得到充分的充电。而VT2导通后,C5又放电。这样,它上面的电压是一些幅度很小的锯齿波,达不到足以使VDB3导通的电压。因此,一旦电路转换,VT1、VT2轮流导通与截止后,VDB3将不再能导通,对VT2也不起任何作用。
当VT2电流增加使磁环趋向饱和,各绕组感应电动势急剧下降,VT2基极电位也下降,ic2减小,在磁环变压器中将产生与ic2以增加时相反极性的电动势,即各绕组中用•表示的同名端电压为负,这样一来,VT1的基极电位上升,集电极电流ic1增加,电流的流通路径为Vc3→VT1集电极→电感L2→灯丝→C6→灯丝→C8→地。
流过电感L2及磁环的电流与VT2导通时的电流方向相反,并形成以下连锁反应:




结果,VT2迅速退出饱和变为截止,而VT1迅速由截止变为导通并饱和。
上述过程周而复始地重复下去,VT1、VT2轮流导通与截止,在两个半桥中点之间形成交变的方波电压,其幅度为E/2 (有源半桥中点的电压由E下降到0,以后又由0跳变为E,而无源半桥中点的电压为E/2)。此交变电压经过启动电容C6,电感L2的串联谐振作用,其电流变为接近正弦波,并在C6两端产生了一个很高的电压(其值由电感L2的Q值及电容C6值决定)加到灯管上,从而将灯管启辉点亮。


评论

技术专区