工业控制 | 能源技术 | 汽车电子 | 通信网络 | 安防监控 | 智能电网 | 移动手持 | 无线技术 | 家用电器 | 数字广播 | 消费电子 | 应用软件 | 其他方案

电路设计->电子DIY及课题设计电路图->电子制作电路图->一种实用的三相步进电机驱动器的设计

一种实用的三相步进电机驱动器的设计

作者:dolphin时间:2011-05-11浏览次数:5191

步进电机又称脉冲电动机或阶跃电动机,是较早使用的典型机电一体化元件组件 例如,在机械装置中可以用丝杠把角度变成直线位移,也可以用步进电机带动螺旋电位器,调节电压或电流,从而实现对执行机构的控制。步进电机可以直接接收数字信号,不必进行数模转换,使用起来非常方便,在阀门控制、数控机床、绘图仪、打印机以及光学仪器中得到广泛的应用。步进电机、步进电机驱动器构成了步进电机系统不可分割的两大部分。本文介绍一种实用的三相反应式步进电机驱动电路的设计。

1 应用器件简介
1.1 PMM8713芯片
PMM8713是由日本Sanyo(三洋)电机公司生产的步进电机控制用脉冲分配器(又称逻辑转换器),为双列直插式16脚单片CMOS集成芯片。PMM8713既可以用于3相控制,又可以用于4相控制。励磁有1相、2相和1-2相3种方式,通过电路设计可任选其中的一种激励方式。此外,PMM8713还具有单时钟或双时钟工作方式,带有正反转控制功能以及初始化复位功能,其内部有时钟选通、激励方式控制、可逆环形计数、激励方式判断等电路。
因为PMM8713所有输入端均采用施密特整形电路,因此抗干扰能力强。输出电流大于20 mA,可直接驱动微型步进电机。逻辑框图如图1所示。
PMM8713逻辑框图
1.2 LM331芯片
LM331是美国NS公司生产的性能价格比较高的集成芯片。LM331可用作精密的频率电压(F/V)转换器、A/D转换器、线性频率调制解调、长时间积分器以及其它相关的器件。LM331为双列直插式8脚芯片,其逻辑框图如图2所示。
LM331逻辑框图
LM331内部有输入比较电路、定时比较电路、R-S触发电路、复零晶体管、输出驱动管、能隙基准电路、精密电流源电路、电流开关、输出保护电路等。输出管采用集电极开路形式,因此可以通过选择逻辑电流和外接电阻,灵活改变输出脉冲的逻辑电平,从而适应TTL、DTL和CMOS等不同的逻辑电路。此外。LM331可采用单/双电源供电,电压范围为4~40 V,输出也高达40 V。
1.3 电压-频率变换
LM331外接电路简单,只需接入几个外部元件就可以方便地构成电压/频率(V/F)或频率/电压(F/V)变换电路。本文选用LM331的电压/频率(V/F)转换功能.结构如图3所示。
LM331电压/频率变换电路
外接阻容Rt、Ct和内部电路构成单稳定时电路。当输入端Vi+输入正电压 时,Vi+大于Vi-,输入比较器输出高电平,R-S触发器置位,输出高电平使输出驱动管导通,从而第3脚f0输出逻辑低电平。同时,电流源IR对电容CL充电。由于复零晶体管的基极接在R-S触发器的反相输出端,因此,复零晶体管截止,电源Vcc通过电阻Rt对电容Ct充电。当Uct大于2/3 Vcc时,定时比较器输入端(第5脚)为正,因而输出逻辑高电平至R-S触发器的复位端,使R-S触发器复位。R-S触发器正相输出端输出低电平使输出驱动管截止,Vdd通过上拉电阻R0使LM331第3脚f0输出逻辑高电平。此时,R-S触发器反相输出端输出高电平使复零晶体管导通,电容Ct通过复零晶体管对地放电。电流开关打向左边,电容CL通过电阻RL对地放电。当电容CL放电电压等于输入比较器的正输入端电压Vi时,输入比较器再次输出高电平,使R-S触发器置位,输出驱动管导通,f0输出逻辑低电平。如此反复循环,从而在f0端输出一定频率的脉冲信号。根据电容上电荷平衡原理和相关电学知识,设电容的充电时间为t1,放电时间为t2。由C=Q/U, I=Q/t,Q=Q,可以得至It2=It1→t2UL/RL=(IR-UL/RL)t1→(t1+t2)= (IRt1RL)/UL;又f=1/T,这里T=t1+t2,所以:
f0=1/(t1+t2)=UL/(IRt1RL)
UL为电容C 两端的电压,因为UL在大约10 mV的范围内波动,因此,UL=Vi,故:
f0=Vi/(IRt1RL) (1)
从(1)式可以看出,LM331的输出频率. f0与输入电压Vi成正比,从而实现了输入电压和输出频率的变换。t1由外接的定时元件Rt和Ct决定,其关系为t1=1.1RtCt,这样可以依据设计电路的要求相应地选取Rt和Ct的值。 由内部精密电流源提供.IR=1.9 V/Rs。式(1)可变为
f0= ViRs/(2.09RLRtCt) (2)
输入电阻Ri使7脚偏流抵消6脚偏流的影响,从而减小了频率偏差。Rs为可调电阻,它的作用是调整LM331的增益偏差。Ci为滤波电容,一般为0.01~0.1 uF,在滤波效果较好的情况下,可使用1uF的电容。当6脚和7脚的RC时间常数匹配时,输入电压的阶跃变化将引起输出频率的阶跃变化。为了提高精度和稳定度,阻容元件选用低温度系数的器件。

2 驱动器电路设计
驱动电路如图4所示。外接电阻Rt和电容Ct 、内部定时比较器、复零晶体管、R-S触发器等构成单稳定时电路。当输入端Vi+输入的电压大于Vi-输入端的电压时,f0输出逻辑低电平。同时,电流源IR对电容CL充电。电源Vcc也通过电阻Rt对电容Ct充电。当电容Ct两端的充电电压大于Vcc的2/3时,输出端,f0输出逻辑高电平。f0信号输出至PMM8713 芯片的时钟端,该频率经PMM8713处理后,在A、B、C脚输出一定频率的驱动信号来控制功率三极管的导通时间,从而控制步进电机的转速。

方向控制电路由LM348四电路通用运算放大器构成。外部方向控制信号通过LM348和基准电压构成电压比较电路。当Vdi大于基准电压VH时,U3A输出为正,接至PMM8713的第4脚,控制输出端输出正相脉冲序列。当Vdi小于基准电压VH时,输出端为负,接至PMM8713的第4脚,控制输出端输出负相脉冲序列,相应相驱动输出端输出正反向脉冲序列,从而控制步进电机的正反转。



解决方案


评论

技术专区