工业控制 | 能源技术 | 汽车电子 | 通信网络 | 安防监控 | 智能电网 | 移动手持 | 无线技术 | 家用电器 | 数字广播 | 消费电子 | 应用软件 | 其他方案

电池与电源管理

作者:dolphin时间:2012-11-12

电池电源管理

由于无线手机的通话与待机时间越来越长,又能支持更多种类的复杂无线应用系统,因此整合式电源供给正迅速成为这类产品的一项重要需求。本文将讨论电池、电池系统以及电源的转换。

我们所要讨论的第一个主题就是系统的心脏:电池。讨论的内容则包括了电池的种类、电池的充放电以及系统的维护;我们将会讨论电源需求、安全考量、成本、单位电池(cell)的数目、对环境的影响、寿命周期、单位电池的额订电压以及各种电池的优缺点(镍镉电池、镍氢电池、锂离子电池以及锂聚合物电池)。

电池是什么?

电池会透过化学物质或离子的交换反应,把能量储存在所产生的电位场中。对于可拋弃式电池(或称为一次电池)来说,想透过电路操作来还原这些反应是一件不可能或不切实际的事情;但是对于充电电池(又称为二次电池)而言,如果我们外加一个电压,并且让它的大小超过电池电压,就可以让这些反应还原,同时将能量储存到电池内部,而不是从电池取出能量。电池管理就是管理一系列的化学反应。

电池为什么需要管理?

所谓「二次化学反应」是指发生在电池组件之间的化学反应,也就是储存与释放能量等一次反应之外的其它化学反应。二次反应不但会释出额外的热量,而且随着时间与寿命周期(充电与放电的次数)的增加,还会产生一些固态、液态或是气态的副产品,其中固态杂质会在电池的反应表面上结晶,并且遮住可用来储存电荷的「反应位置」(reaction sites)。热量会从液体或气体电解质中蒸发出重量较轻的成份,如果气体的产生速率大于电池零件所能吸收的速率,就会在密封电池的内部产生压力,而未密封的电池则会造成「气体外泄」的现象,并改变化学物质的组合成份。

如果我们对一颗已经处于满电位的电池继续施加能量,那么二次反应的速度就会大幅加快,这就是所谓的电池「过度充电」(overcharging),它不但让电池的蓄电能力降低,还会缩短电池的周期寿命;此外,对于某些电池化学来说,过度放电也会造成同样的效果。为了释出内部的压力,电池的密封有可能被这些高压气体冲破,可能造成暂时或是永久性的破坏。 电池有一个「自放电率」(self-discharge rate),这是指在未供应电流给外部负载的情形下,电池自行「泄漏」储存电力的速度。当电池完成充电后,我们仍须进行维护性或「浮动式」(float)充电,而且充电速率必须等于电池的自放电率,才能让电池一直保持在满电力的状态。

电池常常被串联或是并联在一起使用。若采用这样的工作方式,那么只要这些电池之间有些许差异,就可能对某些电池化学产生很大的影响。因此,电池制造商与代工制造商必须要求电池有相同的化学、制造商、出厂时间、甚至是生产批号。甚至某些电池化学还是必须监测所有的电池。
 
单位电池、电池和电池组

电池的化学反应会产生一个固有电压,这个电压是电池化学反应的一项性质,它与电池的结构或是体积大小无关。如果一个组件能产生这样的一个固有电压,就称为是一个「单位电池」(cell)。一个「电池」(battery)可能包含很多个单位电池,可以串联、并联或是混联在一起,并且全部安置在同一个case中。在一个「电池外壳」(enclosure)中放入多个单位电池或是电池,而且这些单位电池或电池都有自己的case,则这个电池外壳就称为「电池组」(pack)。

应用系统也可使用多个电池组,这或许是因为它所须的电力超出了一个电池组的供电能力,或许是为了让一个电池组供电,其它的电池组则进行充电或维护。这类应用系统可能对电池管理电路有些其它的要求,以便在充电周期的不同时间点上,或是在不同的安装与拆卸条件下,都能依序对各个电池组进行充电。
电池结构的专门术语

单位电池中有两个反应表面,它们的化学成份并不相同,并且由一些不起化学反应也不导电的分隔层将它们固定隔开,在反应表面之间则会填满一种电化学反应良好的材料,称为电解质;在大多数商用电池中,电解质是一种液体或是胶质,但是在一些比较少见的电池中,可能是气体或是固体。在反应表面上有一些电路接点(tabs),其中高电位材料上的接点称为正接点,低电位的材料为负接点。在电池case内部还有两块特别区域,彼此互不导电,主要是做为电池的正极与负极;其中正极会经由一条线路连接到单位电池内的正接点,负极则会连接到负接点。

由于绝大多数的电池都是圆柱形状,因此厂商会在负极材料上面覆盖一层的分隔层,然后再盖上一层的阳极材料,最后再把它们卷起来,装入圆柱状的电池内。另一方面,如果可以折叠这些分层覆盖的材料,就可以做出更节省空间的方型电池。铅酸电池就采用了方型的外壳,电池内部会加入电解液,然后将正极电板与负极电板一片片的轮流固定,并且浸泡在这些电解液中。

在所有的商用电池中,厂商都会在单位电池内做一个释出压力的安全结构,以便在过度充电情形极为严重时,用一种受控制的方式将气体排出。某些电池还会包含保险丝组件以及超温保护组件,这在锂离子电池中最常见。
选择充电电池的化学机制

要针对特定的应用来选择电池化学,就必须让电池化学与应用系统的特性能够相互配合;在今天的商业应用中,常用的电池化学有五种。

表1:五种主要的电池化学
1. 镍镉电池(NiCd)
2. 镍氢电池(NiMH)
3. 锂离子电池(Li-ion)
4. 碱性充电电池
5. 封闭式铅酸电池

传统上,消费性家电产品的充电电池大都是镍镉电池,因为镍镉电池是一种成熟的产品,并且我们了解镍镉电池的化学反应。但在另一方面,镉金属的管理却越来越严格,某些地区还要求对它做强制回收,再加上镍镉电池是一种成熟的产品,因此在容量和寿命周期上也没有太大的改良空间。

相较于镍镉电池,无论在单位重量或是单位体积的电能储存密度上,镍氢电池都提供了相当的改进;锂离子电池的表现则又进了一步,因为它的电能储存密度要比镍镉电池高出一倍以上。虽然镍氢或锂离子化学机制有其优点,但缺点则是电路相当脆弱,其中又以锂离子机制特别明显,它不但会因为电池管理不良而损坏,而且电解质还可能着火,因此电池管理就相当的重要。厂商通常会在锂离子电池组的内部装上一些故障保护机制,以便在电压/电流过大或是温度过高的时候,将电池与负载以及/或是充电器之间的电路切断;此外,厂商多半还会在电池组的内部装上另一组特殊电路,提供可重设的保护功能。但是,镍氢或是锂离子电池的电流供应能力还是比不上镍镉电池,对于耗电量较大、却又无法使用外部电源的绝大多数产品,镍镉电池仍然是较佳的选择。

碱性充电电池的形状与一次电池相同,主要目的也是用来取代这些可拋弃的电池;虽然售价约是一次碱性电池的两倍,但是就电池的使用寿命而言,整体成本却比后者低了许多。对于低电流应用需求来说,它们不但是最便宜的充电化学机制,而且也拥有最小的自放电率。碱性充电电池的缺点在于周期寿命最短,若在每一次的充放电周期中,将电池完全充满,那么这类电池大约可使用25次。
汽车上的电池大都是铅酸电池,不但可供应很大的电流,而且是成本最低的电池反应化学机制。铅酸电池能够承受长时间的维护性充电电流,因此常常可在传统的「浮动式」(floating)电源设备中发现它的踪迹,例如不断电系统或是紧急照明装置。另一方面,铅酸电池的缺点最主要的是单位重量或是单位体积的电能储存密度最低。

对大型的商业应用,电池化学的下一步应是锂聚合物反应,这是相当令人振奋的技术,因为它让电池变成了一张很有弹性的聚合物薄片,夹在阴极与阳极材料之间。这项特色开启了一道应用大门,厂商终于可把电池做成任何一种形状;此外,从电池管理电路的角度来看,锂聚合物的绝大多数性质都和锂离子化学相同。
 
充电与放电速率

充电与放电速率会对电池化学造成影响,这主要表现在电池的蓄电能力,一般是用「安培小时」来代表电池的蓄电能力(锂离子电池则大都使用「瓦特小时」,这是因为锂离子单位电池的电压较高,使得电能储存量的重要性超过了电流储存量。)

电池在充电时,总是会针对电池的电压、电流和温度设定一些保护条件,若用越快的速度充电,那么电池的状态就会更快突破这些保护条件,导致它所能接受的能量反而减少。同样的,如果电池的放电速率越快,那么电压下降的速率就会超过蓄电量减少的速率,导致电池的实际工作时间比额订的放电时间还短。因此,相较于放电速率较慢的应用场合,高放电速率的应用系统(例如电源工具)就需要完全不同的补偿因素,才能完全弥补这个现象。

由于电池的储存能量以及供应能量分别是充电速率与放电速率的函数,因此可用「C」来代表这些速率,它是用操作电流大小(安培)除以总蓄电量(安培小时)所得的结果;举例来说,若放电速率为1C,就表示一个小时就能把电池的电力用尽。充电所须的时间会比原来的C速率还要长,因为电池的充电效率不可能达到百分之一百,而是会随着电池种类的不同而改变,从镍氢电池的80%到锂离子与充电碱性电池的100%左右。

温度效果

电池的温度若与25℃相差越多,那么电池的蓄电量、充电能力、保存期限以及周期寿命就会减少的更多。一般说来,电池的自放电率会随着温度的上升而增加,大约每10℃就增加一倍。除了镍镉电池之外(它的充电化学反应是一种吸热反应),其它电池在充电时,温度都会上升;若采用过度充电的方式,那么温度上升的速度还会加快。在镍镉电池当中,通常会使用DT/Dt来做为快速充电的中止条件,它代表温度相对于时间的变化速率。由于电池温度上升的时候,电解质的电阻就会减少,因此若充电算法不去检查电池的温度,那么随着电解质电阻的降低,充电电流就会不断增加,进而造成电池温度继续上升,并形成一个危险的正回授路径,这种情形称为「热失控」(thermal runaway)。

电池的充电

稳定充电器(trickle charger)
最保守的充电解决方案只包含一个「稳定」(trickle)充电阶段,只要电池与充电器连接在一起,它就会以制造商所指定「标准」充电速率(通常是C/10左右)继续对电池充电。这种充电器完全不须管理,它不会用电池监测器或是定时器来停止充电,因此成本最低。

快速充电器(quick charger)
快速充电的速率约是C/3或C/4,可将电池的充电时间缩短为4或5个小时。快速充电器通常是由定时器来控制,时间一到就停止充电,不须再使用其它的电池监测器。这种技术虽能降低充电器的成本,但制造必须考虑到,让电池在充满电力的情形下,仍能承受一次完整周期的过度充电;这样若使用者不小心对一颗电力已满的电池重新充电,也不会造成电池的损坏。快速充电电池的结构与正常电池有些不同,它们的内部结构会做的比较大,这样才能吸收过度充电时所产生的气体。

高速充电器(fast charger)
高速充电速率通常是1C或2C,但目前也有厂商推出了一些充电速率高达4C的电池。由于在过度充电的情形下,这些电池可能造成很大的损害,因此必须使用一种「智能型」(smart)充电器,由它来监测电池的状态,同时规定很严格的「充电中止条件」。智能型充电器内部包含了相关的电路,除了控制充电过程之外,还负责提供其它三项功能:电池状态的调节、充电开始之前的电池鉴定、以及确保充电过程符合所设定的安全条件。

电池状态的调节
当电池使用一段时间后,在反应表面上会形成一些结晶,会妨碍充电的进行,而其中某些结晶只有透过实际接触方式才能清除。但是,受到电机效应的影响,目前还没有一种可靠的方法能用电气方式除去这些结晶。若使用者对于电池的管理良好,避免过度充电的情形发生(在某些化学机制中还包括过度放电),那么相较于被滥用的电池,前者的二次反应副产品累积速度就会比较慢,而且工作时的温度也比较低,这不但能延长电池的周期寿命,还可将电池的高蓄电能力维持一段较长的时间。

要让镍镉电池拥有最大的蓄电量,有一种电气操作方式相当管用。镍镉电池会受到「记忆效应」的影响,也就是当电流通过镍镉电池内部已充电的储存区域时,就会改变这个区域结晶结构的相位状态。在这个新的相位状态下,无论在储存能量或是释放能量的反应过程中,都只能得到较低的电压。

在对镍镉电池充电之前,若先将电力释放出来,就可让充电区域的化学反应逆向进行,并将结晶结构恢复正常,因此能消除电池的记忆效应。对于镍镉电池来说,充电前的放电动作是一个很有用的充电前调节步骤。

电池的鉴定

电池鉴定的目的是为了确定电池的状态正常,可接受充电。我们可以对电池进行开路与短路测试:在开路测试的时候,在电池两端加上一个电压,然后调整这个电压值,以得到最小的电池电流;在短路测试的时候,则会让电池通过一个电流,然后调整这个电流的大小,以得到最小的电池电压。一般说来,在进行测试时所施加的电压或电流都不会超过高速充电值的一半。

另一方面,制造商会指定一个充电温度范围,充电动作只能在这个温度范围内进行。只要厂商在电池组内装一个热敏电阻,那么在进行高速充电之前,就可先检查这些温度限制。此外,若电池已经过度充电,就不应再度充电;若一个电池已经释放了大量的电力,并且不适合接受较高的充电速率,那么也不应该再进行高速充电。

电池鉴定失败的处理方式有好几种,要排除短路或开路故障,更换电池是唯一的方法。若是温度或电压方面的问题,那么充电器可能会进入「暂停充电」(charging pending)的状态,等待相关条件回到电池所允许的范围。若电池的电压过低,那么在电池的调节阶段,充电器通常会采用稳定充电的方式,让电池电压回升到高速充电所允许的最小电压。

一套完整的充电解决方案最多可以包含四个部份:
高速充电算法
高速充电中止条件
充电完成(top-off)算法
维护性充电算法
在铅酸电池世界中,高速充电阶段又称为「大量充电」(bulk charging)阶段,用来对电池做快速的充电;至于电池的电力是否已经储满?高速充电阶段又应该于何时停止?这些都是由高速充电中止条件来选择适当的判断依据。对镍氢电池来说,当高速充电周期因为温度或是电压的限制而必须停止时,通常还会有5% ? 20%的电力尚未充满,因此充电器会继续使用一个充电速率较小的「充电完成」阶段(高速充电速率的1/5?1/8),来将镍氢电池的充电工作完成。一般说来,这个充电完成阶段只会进行一段固定的时间。接下来,则是由维护性充电阶段或「浮动阶段」(float phase)来弥补电池的自放电率,让电池能一直保持在充满电力的状态。

算法和中止条件的选择会受到一些因素的影响,例如电池化学、应用系统的特性、电池管理装置所支持的选项、以及电池制造商所提供的产品保证条款(请参考表2)。



评论

技术专区