工业控制 | 能源技术 | 汽车电子 | 通信网络 | 安防监控 | 智能电网 | 移动手持 | 无线技术 | 家用电器 | 数字广播 | 消费电子 | 应用软件 | 其他方案

电路设计->综合电路图->综合电路图->电荷泵工作原理

电荷泵工作原理

作者:dolphin时间:2011-05-11

电荷泵电压反转器是一种DC/DC变换器,它将输入的正电压转换成相应的负电压,即VOUT= -VIN。另外,它也可以把输出电压转换成近两倍的输入电压,即VOUT≈2VIN。由于它是利用电容的充电、放电实现电荷转移的原理构成,所以这种电压反转器电路也称为电荷泵变换器(Charge Pump Converter)。

电荷泵的应用
电荷泵转换器常用于倍压或反压型DC-DC 转换。电荷泵电路采用电容作为储能和传递能量的中介,随着半导体工艺的进步,新型电荷泵电路的开关频率可达1MHz。电荷泵有倍压型和反压型两种基本电路形式。
电荷泵电路主要用于电压反转器,即输入正电压,输出为负电压,电子产品中,往往需要正负电源或几种不同电压供电,对电池供电的便携式产品来说,增加电池数量,必然影响产品的体积及重量。采用电压反转式电路可以在便携式产品中省去一组电池。由于工作频率采用2~3MHz,因此电容容量较小,可采用多层陶瓷电容(损耗小、ESR 低),不仅提高效率及降低噪声,并且减小电源的空间。
虽然有一些DC/DC 变换器除可以组成升压、降压电路外也可以组成电压反转电路,但电荷泵电压反转器仅需外接两个电容,电路最简单,尺寸小,并且转换效率高、耗电少,所以它获得了极其广泛的应用。
目前不少集成电路采用单电源工作,简化了电源,但仍有不少电路需要正负电源才能工作。例如,D/A 变换器电路、A/D 变换器电路、V/F或F/V 变换电路、运算放大器电路、电压比较器电路等等。自INTERSIL公司开发出ICL7660电压反转器IC后,用它来获得负电源十分简单,90 年代后又开发出带稳压的电压反转电路,使负电源性能更为完善。对采用电池供电的便携式电子产品来说,采用电荷泵变换器来获得负电源或倍压电源,不仅仅减少电池的数量、减少产品的体积、重量,并且在减少能耗(延长电池寿命)方面起到极大的作用。现在的电荷泵可以输出高达250mA的电流,效率达到75%(平均值)。
电荷泵大多应用在需要电池的系统,如蜂窝式电话、寻呼机、蓝牙系统和便携式电子设备。 便携式电子产品发展神速,对电荷泵变换器提出不同的要求,各半导体器件公司为满足不同的要求开发出一系列新产品,本文将作一个概况介绍。

电荷泵的分类
电荷泵分类
电荷泵可分为:

  • 开关式调整器升压泵,如图1(a)所示。
  • 无调整电容式电荷泵,如图1(b)所示。
  • 可调整电容式电荷泵,如图1(c)所示。


图1 电荷泵的种类

电荷泵工作过程
3 种电荷泵的工作过程均为:首先贮存能量,然后以受控方式释放能量,以获得所需的输出电压。开关式调整器升压泵采用电感器来贮存能量,而电容式电荷泵采用电容器来贮存能量。

电荷泵的结构
电容式电荷泵通过开关阵列和振荡器、逻辑电路、比较控制器实现电压提升,采用电容器来贮存能量。电荷泵是无须电感的,但需要外部电容器。由于工作于较高的频率,因此可使用小型陶瓷电容(1mF),使空间占用小,使用成本低。电荷泵仅用外部电容即可提供±2 倍的输出电压。其损耗主要来自电容器的ESR(等效串联电阻)和内部开关晶体管的RDS(ON)。电荷泵转换器不使用电感,因此其辐射EMI可以忽略。输入端噪声可用一只小型电容滤除。它的输出电压是工厂生产精密预置的,调整能力是通过后端片上线性调整器实现的,因此电荷泵在设计时可按需要增加电荷泵的开关级数,以便为后端调整器提供足够的活动空间。电荷泵十分适用于便携式应用产品的设计。从电容式电荷泵内部结构来看,如图2 所示它实际上是一个片上系统。

图2 电容式电荷泵内部结构

电荷泵工作原理
电荷泵变换器的基本工作原理如图3所示。它由振荡器、反相器及四个模拟开关组成,外接两个电容C1、C2 构成电荷泵电压反转电路。
电荷泵电压反转器工作原理
振荡器输出的脉冲直接控制模拟开关S1及S2;此脉冲经反相器反相后控制S3及S4。当S1、S2 闭合时,S3、S4 断开;S3、S4 闭合时,S1、S2 断开。
当S1、S2 闭合、S3、S4 断开时,输入的正电压V+向C1 充电(上正下负),C1 上的电压为V+;当S3、S4闭合、S1、S2断开时,C1向C2放电(上正下负),C2上充的电压为-VIN,即VOUT=-VIN。当振荡器以较高的频率不断控制S1、S2 及S3、S4 的闭合及断开时,输出端可输出变换后的负电压(电压转换率可达99%左右)。
由图3 可知,电荷泵电压反转器并不稳压,即有负载电流时,输出电压将有变化。输出电流与输出电压的变化曲线(输出特性)称为输出特性曲线,其特点是输出电流越大,输出电压变化越大。
一般以输出电阻Ro来表示输出电流与输出电压的关系。若输出电流从零增加到Io时,输出电压变化为△V,则输出电阻Ro 为:
Ro = △V/Io
输出电阻Ro 越小,输出电压变化越小,输出特性越好。

如何选择电荷泵
1、效率优先,兼顾尺寸
如果需要兼顾效率和占用的 PCB 面积大小时,可考虑选用电荷泵。例如电池供电的应用中,效率的提高将直接转变为工作时间的有效延长。通常电荷泵可实现 90% 的峰值效率,更重要的是外围只需少数几个电容器,而不需要功率电感器、续流二极管及 MOSFET。这一点对于降低自身功耗,减少尺寸、BOM 材料清单和成本等至关重要。
2、输出电流的局限性
电荷泵转换器所能达到的输出负载电流一般低于 300mA,输出电压低于 6V。多用于体积受限、效率要求较高,且具有低成本的场合。换言之,对于 300mA 以下的输出电流和 90% 左右的转换效率,无电感型电荷泵 DC/DC 转换器可视为一种成本经济且空间利用率较高的方式。然而,如果要求输出负载电流、输出电压较大,那么应使用电感开关转换器,同步整流等 DC/DC 转换拓扑。


关键词: 电荷 工作 原理

评论

技术专区