工业控制 | 能源技术 | 汽车电子 | 通信网络 | 安防监控 | 智能电网 | 移动手持 | 无线技术 | 家用电器 | 数字广播 | 消费电子 | 应用软件 | 其他方案

电路设计->综合电路图->综合电路图->一种适用于大功率IGBT模块串联工作的新型驱动电路

一种适用于大功率IGBT模块串联工作的新型驱动电路

作者:dolphin时间:2011-05-11浏览次数:4063

1 引言
随着电力电子技术的飞速发展,特别是IGBT(Insulated Gate BipolarTransistor,绝缘栅双极晶体管)和MOSFET (Metallic oxide semiconductor field effecttransistor,金属氧化物半导体场效应晶体管)等高频自关断器件应用的日益广泛,驱动电路的设计就显得尤为重要。本文介绍了一种以CONCEPT公司的IGD515EI驱动器为主要器件构成的驱动电路,适用于大功率、高耐压IGBT模块串、并联电路的驱动和保护。通过光纤传输驱动及状态识别信号,进行高压隔离传输,具有良好的抗电磁干扰性能和高于15A的驱动电流。因此,该电路适用于高压大功率场合。在隔离的高电位端, IGD515EI内部的DC-DC电源模块只需一路驱动电源就能够产生栅极驱动所需的±15V电源。器件内还包括功率管的过流和短路保护电路,以及信号反馈检测功能。该电路是一种性能优异、成熟的驱动电路。

2 IGD515EI在刚管调制器中的应用
雷达发射机常用的调制器一般有三种类型:软性开关调制器、刚性开关调制器和浮动板调制器。浮动板调制器一般用于控制极调制的微波电子管,而对于阴调的微波管则只能采用软性开关调制器和刚性开关调制器。由于软性开关调制器不易实现脉宽变化,故在阴调微波管发射机的脉宽要求变化时,发射机的调制器往往只能采用刚性开关调制器。刚性开关调制器又称刚管调制器,刚管调制器因其调制开关可受控主动关断而得名。因此,采用这种调制器发射机脉宽可实现脉间变化。
IGBT属于场控功率管,具有开关速度快、管压降小等特点,在刚管调制器中得到越来越广泛的应用,但其触发电路设计以及单只IGBT有限的电压和电流能力是其推广应用的难点。方案采用IGD515EI,加入相应的外围电路,构成了IGBT驱动电路,通过IGD515EI的34脚(SDSOA)多管联用特性端实现两管串联应用,解决了IGBT单管耐压不高的问题。IGBT驱动电路如图1所示。驱动信号通过光纤接收器HFBR-2521送给驱动模块,驱动模块报故障时通过光纤发射器HFBR-1521送出故障信号给控制电路,由控制电路切断所有IGBT驱动电路的驱动信号,各个IGD515EI同时输出-15V的负偏压,各个IGBT同时关断,避免个别器件提前关断,造成过压击穿。

图1 IGBT驱动电路

2. 1 IGBT驱动器电源设计
由于IGD515EI只需要单路电源供电,在输入端的10脚(VCC)和9脚(GND)接入+15V电源,由模块内部通过DC/DC变换产生±15V和+5V输出,为光纤发射器、接收器以及输出电路提供电源。因而对每个处于高电位的驱动电路来说,只需提供一个15V电源即可,便于做到电位隔离。

2. 2 IGBT栅极触发电路设计
驱动器的25脚(G)输出的驱动电压为±12V~±15V,这取决于电源电压;也可不产生负的栅极电压,这要由具体的应用和所使用的功率管决定。最大栅极充电电流是±15A,充电电流由外接的栅极电阻限定。如果将25脚G通过电阻直接与IGBT:G相连, IGBT的驱动波形上升沿较大,但IGBT导通后上升较快,如图2所示;

图2 IGD515EI输出端不加MOS管时IGBT的驱动波形(-14V~+12V, 5V/div, 5μs/div)
如果在25脚与IGBT:G中间串入一只MOS管,进行电流放大,可有效地减小IGBT驱动波形的上升沿,缩短IGBT的导通过程,减小IGBT离散性造成的导通不一致性,减小动态均压电路的压力,但IGBT导通后上升较慢,其波形如图3所示。

图3 IGD515EI输出端加MOS管时IGBT的驱动波形(-14V~+12V, 5V/div, 5μs/div)

2. 3 IGBT过流检测及保护电路参数的选择
(1)响应时间电容和中断时间电容选择
功率管,特别是IGBT的导通需要几个微秒,因此功率管导通后要延迟一段时间才能对其管压降进行监测,以确定IGBT是否过流,这个延迟即为“响应时间”。响应时间电容CME的作用是和内部1. 5kΩ上拉电阻构成数微秒级的延时ta,CME的计算方法如下:

  在IGBT导通以后,通过IGD515EI内部的检测电路对19脚的检测电压(IGBT的导通压降)进行检测。若导通压降高于设定的门限,则认为IGBT处于过流工作状态,由IGD515EI的35脚送出IGBT过流故障信号,经光纤送给控制电路,将驱动信号封锁一小段时间。这段时间为截止时间tb,大小由20脚(Cb)与24脚(COM)之间外接的电容Cb确定。对于给定的截止时间,则Cb由下式确定:

  试验中,我们选择Cbmax=470nF,此时截止时间为33. 65ms。需要说明的是,通过调整19脚的外接电阻的阻值,可以调整检测的门限电平。

2. 4 IGBT的串联
(1)串联IGBT电压均衡
串联IGBT工作的一个重要方面是对由于器件的离散特性与驱动电路的不匹配在器件两端引起的静态和动态不均衡。
静态均衡可以在IGBT的C、E两端并联阻值较大的电阻R4来实现,如图4所示。通过并联电阻的分压,保证在IGBT关断期间每只IGBT两端的电压相等。该电阻必须参考IGBT的漏电流,在此基础上进行合适的选择,要使流过分压电阻的电流比IGBT的最大漏电流大若干倍,同时要注意均压电阻的阻值不能过分小,以免增加功率损耗。
动态均压电路由图4中的D1、R1、C1组成。在IGBT开始关断或开始导通时,由于IGBT导通的离散性,必然有个别IGBT提前导通或提前关断,在迟后导通和提前关断的IGBT两端,必然会产生尖峰电压,在IGBT的两端通过D1并联电容C1,使尖峰电压必须先对C1充电,这样IGBT两端的尖峰电压的上升速度受到C1的限制,并可由并联在每个IGBT两端的C1分压,由C1实现对动态尖峰电压的均衡。在IGBT导通期间,由于D1的单向导电特性, C1通过R1、IGBT将储存的电荷放掉,以便吸收IGBT下次关断时产生的浪涌电压。选择R1时要考虑C1的放电时间常数,确定合适的阻值。



解决方案


评论

广州华工科技 · 2016-07-13 14:08:03

富士IGBT模块中国一级总代理, 广州华工科技开发有限公司,欢迎咨询020-85511281 李生

技术专区