工业控制 | 能源技术 | 汽车电子 | 通信网络 | 安防监控 | 智能电网 | 移动手持 | 无线技术 | 家用电器 | 数字广播 | 消费电子 | 应用软件 | 其他方案

电路设计->综合电路图->综合电路图->触摸屏的性能及应用

触摸屏的性能及应用

作者:dolphin时间:2011-05-11

原理和分类
触摸屏系统一般包括两个部分:触摸检测装置和触摸屏控制器。触摸检测装置安装在显示器屏幕前面,用于检测用户触摸位置,接收后送触摸屏控制器;触摸屏控制器的主要作用是从触摸点检测装置上接收触摸信息,并将它转换成触点坐标,再送给CPU,它同时能接收CPU发来的命令并加以执行。
随着科技的进步,触摸屏技术也经历了从低档向高档逐步升级和发展的过程。根据其工作原理,其目前一般被分为四大类:电阻式触摸屏、电容式触摸屏、红外线式触摸屏和表面声波触摸屏。
电阻式触摸屏
电阻触摸屏的屏体部分是一块多层复合薄膜,由一层玻璃或有机玻璃作为基层,表面涂有一层透明的导电层(ITO膜),上面再盖有一层外表面经过硬化处理、光滑防刮的塑料层。它的内表面也涂有一层ITO,在两层导电层之间有许多细小(小于千分之一英寸)的透明隔离点把它们隔开。当手指接触屏幕时,两层ITO发生接触,电阻发生变化,控制器根据检测到的电阻变化来计算接触点的坐标,再依照这个坐标来进行相应的操作。电阻屏根据引出线数多少,分为四线、五线等类型。五线电阻触摸屏的外表面是导电玻璃而不是导电涂覆层,这种导电玻璃的寿命较长,透光率也较高。
电阻式触摸屏的ITO涂层若太薄则容易脆断,涂层太厚又会降低透光且形成内反射降低清晰度。由于经常被触动,表层ITO使用一定时间后会出现细小裂纹,甚至变型,因此其寿命并不长久。
电阻式触摸屏价格便宜且易于生产,因而仍是人们较为普遍的选择。四线式、五线式以及七线、八线式触摸屏的出现使其性能更加可靠, 同时也改善了它的光学特性。
电容式触摸屏
电容式触摸屏的四边均镀上了狭长的电极,其内部形成一个低电压交流电场。触摸屏上贴有一层透明的薄膜层,它是一种特殊的金属导电物质。当用户触摸电容屏时,用户手指和工作面形成一个耦合电容,因为工作面上接有高频信号,于是手指会吸走一个很小的电流,这个电流分别从屏的四个角上的电极中流出;且理论上流经四个电极的电流与手指到四角的距离成比例,控制器通过对四个电流比例的精密计算,即可得出接触点位置。
电容触摸屏的双玻璃不但能保护导体及感应器,更能有效地防止外在环境因素对触摸屏造成影响,就算屏幕沾有污秽、尘埃或油渍,电容式触摸屏依然能准确算出触摸位置。但由于电容随温度、湿度或接地情况的不同而变化,其稳定性较差,往往会产生漂移现象。
尽管不像电阻式应用那么广, 电容式触摸屏也是受欢迎的供选类型。这类设备精确、反应快,尺寸稍大时也有较高分辨率, 更耐用(抗刮擦), 因而适合用作游戏机的触摸屏。而且,新出现的近场成像技术改良了电容式触摸屏的性能, 减弱了在它和电阻式触摸屏中可能出现的漂移现象。
红外线式触摸屏
红外触摸屏的四边排布了红外发射管和红外接收管,它们一一对应形成横竖交叉的红外线矩阵。用户在触摸屏幕时,手指会挡住经过该位置的横竖两条红外线,控制器通过计算即可判断出触摸点的位置。
红外触摸屏也同样不受电流、电压和静电干扰,适宜于某些恶劣的环境。其主要优点是价格低廉、安装方便,可以用在各档次的计算机上。此外,由于没有电容充放电过程,响应速度比电容式快,但分辨率较低。
表面声波触摸屏
表面声波是超声波的一种,它是在介质(例如玻璃或金属等刚性材料)表面浅层传播的机械能量波。通过楔形三角基座(根据表面波的波长严格设计),可以做到定向、小角度的表面声波能量发射。表面声波性能稳定、易于分析,并且在横波传递过程中具有非常尖锐的频率特性,近年来在无损探伤、造影和退波器等应用中发展很快。
这种触摸屏的显示屏四角分别设有超声波发射换能器及接收换能器,能发出一种超声波并覆盖屏幕表面。当手指碰触显示屏时,由于吸收了部分声波能量,使接收波形发生变化,即某一时刻波形有一个衰减缺口,控制器依据衰减的信号即可计算出触摸点位置。
表面声波触摸屏不受温度、湿度等环境因素影响,分辨率极高,有极好的防刮性,寿命长(5000万次无故障),透光率高(92%),能保持清晰透亮的图像;没有漂移,只需安装时一次校正;有第三轴(即压力轴)响应,最适合公共场所使用。
表面声波触摸屏易受水滴、灰尘的影响,改进的方法是加防尘条,或者增加对污物的监控,准确识别出有效的操作和污物之间的区别。另外,由于声波屏能感受压力,无形中增加了控制手段,对屏功能的扩展十分有利,其应用范围因此而大大拓展。
触摸屏的基本技术
绝对坐标系统
触摸屏是一种绝对坐标系统,其特点就是当前定位坐标与上一次定位坐标没有关系,每次触摸的数据通过校准直接转化为屏幕上的坐标。不管在什么情况下,触摸屏这套坐标体系对同一点的输出数据都是稳定的。不过,它并不能保证每一次对同一点触摸的采样都相同,即不能保证绝对坐标定位,这就是所谓的漂移问题。
定位
各种触摸屏都是依靠传感器来工作的,甚至有的触摸屏本身就是一套传感器。它们各自的定位原理和各自所用的传感器决定了触摸屏的反应速度、可靠性、稳定性和寿命。各类触摸屏的技术特性如表1所示。

表1 各种触摸屏基本技术对照表
触摸屏的性能比较
电阻式触摸屏工作在与外界完全隔离的环境中,它不怕灰尘、水气和油污,可以用任何物体来触摸,比较适合工业控制领域使用。缺点是由于复合薄膜的外层采用塑料,太用力或使用锐器触摸可能划伤触摸屏。
电容式触摸屏的分辨率很高,透光率也不错,可以很好地满足各方面的要求,在公共场所常见的就是这种触摸屏。不过,电容式触摸屏把人体当作电容器的一个电极使用,当有导体靠近并与夹层ITO工作面之间耦合出足够大的电容时,流走的电流就会引起电容式触摸屏的误动作;另外,戴着手套或手持绝缘物体触摸时会没有反应,这是因为增加了绝缘的介质。
红外线触摸屏是靠测定红外线的通断来确定触摸位置的,与触摸屏所选用的透明挡板的材料无关(有一些根本就没有使用任何挡板) 。因此,选用透光性能好的挡板, 并加以抗反光处理,可以得到很好的视觉效果。但是,受到红外线发射管体积的限制,不可能发射高密度的红外线,所以这种触摸屏的分辨率不高。另外,由于红外线触摸屏依靠红外感应来工作,外界光线变化,如阳光或室内灯等均会影响其准确度。


关键词: 触摸屏 能及 应用

评论

技术专区