工业控制 | 能源技术 | 汽车电子 | 通信网络 | 安防监控 | 智能电网 | 移动手持 | 无线技术 | 家用电器 | 数字广播 | 消费电子 | 应用软件 | 其他方案

电路设计->电源电路图->整流单元电路图->施密特触发器电路原理

施密特触发器电路原理

作者:dolphin时间:2011-05-04

什么叫触发器
施密特触发电路( 简称)是一种波形整形电路,当任何波形的信号进入电路时,输出在正、负饱和之间跳动,产生方波或脉波输出。不同于比较器,施密特触发电路有两个临界电压且形成一个滞后区,可以防止在滞后范围内之噪声干扰电路的正常工作。如遥控接收线路,传感器输入电路都会用到它整形。
施密特触发器
一般比较器只有一个作比较的临界电压,若输入端有噪声来回多次穿越临界电压时,输出端即受到干扰,其正负状态产生不正常转换,如图1所示。


图1 (a)反相比较器 (b)输入输出波形
施密特触发器如图2 所示,其输出电压经由R1 、R2 分压后送回到运算放大器的非反相输入端形成正反馈。因为正反馈会产生滞后(Hysteresis)现象,所以只要噪声的大小在两个临界电压(上临界电压及下临界电压)形成的滞后电压范围内,即可避免噪声误触发电路,如表1 所示838电子


图2 (a)反相斯密特触发器 (b)输入输出波形
表1施密特触发器的滞后特性
上临界电压VTH
下临界电压VTL
滞后宽度(电压)VH
VTLVTH
输入端信号νI 上升到比VTH 大时,触发电路使νO 转态
输入端信号νI 下降到比VTL 小时,触发电路使νO 转态
上、下临界电压差VH =VTH -VTL
噪声在容许的滞 后宽度范围内,νO 维持稳定状态 反相施密特触发器
电路如图2 所示,运算放大器的输出电压在正、负饱和之间转换:
νO= ±Vsat 。输出电压经由R1 、R2 分压后反馈到非反相输入端:ν+= βνO,
其中反馈因数=


当νO为正饱和状态(+Vsat )时,由正反馈得上临界电压


当νO 为负饱和状态(- Vsat )时,由正反馈得下临界电压

VTH 与VTL 之间的电压差为滞后电压:

2R1


图3 (a)输入、输出波形 (b)转换特性曲线
输入、输出波形及转换特性曲线如图3(b)所示。
当输入信号上升到大于上临界电压VTH 时,输出信号由正状态转变为负状态即:
νI >VTH→νo = - Vsat
当输入信号下降到小于下临界电压VTL 时,输出信号由负状态转变为正状态即:
νI <VTL→νo = + Vsat
输出信号在正、负两状态之间转变,输出波形为方波。
非反相施密特电路


图4 非反相史密特触发器
非反相施密特电路的输入信号与反馈信号均接至非反相输入端,如图4所示。
由重迭定理可得非反相端电压

反相输入端接地: ν- = 0,当ν+ = ν- = 0 时的输入电压即为临界电压。

将ν+ = 0 代入上式得


整理后得临界电压

当νo 为负饱和状态时,可得上临界电压

当νo为正饱和状态时,可得下临界电压,

VTH与VTL之间的电压差为滞后电压:




图5 (a)计算机仿真图 (b)转换特性曲线
输入、输出波形与转换特性曲线如图5所示。
当输入信号下降到小于下临界电压VTL 时,输出信号由正状态转变为负状态:
νo TL →νo = - Vsat
当输入信号上升到大于上临界电压VTH 时,输出信号由负状态转变为正状态:
νo > VTL →νo = + Vsat
输出信号在正、负两状态之间转变,输出波形为方波。
史密特触发器电路原理实验:
如图6,当Vi 大于VR 时运算放大器的输出会得到一个正向电压输出;若VR大于Vi时则会得到一个负电压。电压的大小则由两个齐紊二极管来限压。理想的运算放大器其输出上升时间为0,而在实际的电路上是上可能得到这么理想的曲线,一般从负压上升到正压需要一小段的上升时间。换言之,运算放大器并上能立刻反应Vi 及VR 所形成的电压差。如果参考电压VR 固定,那么当Vi 慢慢增加时,仅在Vi-VR


关键词: 施密特 触发器 原理

评论

EEPW网友 · 2012-05-08 14:08:23

讲解的真好。

技术专区