工业控制 | 能源技术 | 汽车电子 | 通信网络 | 安防监控 | 智能电网 | 移动手持 | 无线技术 | 家用电器 | 数字广播 | 消费电子 | 应用软件 | 其他方案

电路设计->机动车 电动车电路图->汽车电子电路图->汽车电子极近场EMI扫描技术方案

汽车电子极近场EMI扫描技术方案

作者:angelazhang时间:2015-02-07

汽车厂商往往采用最新的消费电子系统来体现与其他厂商汽车的差异化,该系统必须在各种苛刻的条件下都能正常工作。动力系统、安全系统和其它汽车控制系统也都有同样的要求,一旦出现故障,这些系统会导致更加严重的后果。

  汽车电子系统对于供应商提供的芯片和印制电路板的电磁辐射特别敏感。因此,SAE(原汽车工程师协会)已经定义测试规范并建立满足电磁兼容(EMC)和电磁干扰(EMI)的需求,并对其进行了不断的完善。采用极近场EM扫描技术,供应商的设计团队可以通过一个桌面系统来计量并立即显示辐射的空间和频谱特性,避免以后在更高费用的模块、系统或整车级测试中出现问题。

  本文讨论几个能够展示这种测试价值的例子。第一个例子是关于“扩频时钟发生器(SSCG)”的辐射特性,分别在“关”和“开”的状况下对其扫描。在第二个例子中,设计团队对比了第二代半双工串行解串器(串行器/解串器)系统与第三代全双工系统。结果验证了新一代功能及其优势,不但帮助客户缩短了产品上市时间,并在客户中产生了积极的影响。

  极近场EMI扫描技术

  快速磁性极近场测量仪器可以捕获和显示频谱和实时空间扫描结果的可视图像。芯片厂商和PCB设计工程师可以扫描任何一块电路板,并识别出50kHz至4GHz频率范围内的恒定或时基的辐射源。这种扫描技术有助于快速解决广泛的电磁设计问题,包括滤波、屏蔽、共模、电流分布、抗干扰性和宽带噪声。

  在任何新PCB的开发过程中,设计工程师都必须找出设计之外的辐射体或射频泄漏,并对其进行描述和处理以通过一致性测试。可能的辐射体包括高速、大功率器件以及具有高密度或高复杂度的器件。扫描系统以叠加在Gerber文件上的形式显示空间辐射特性,因此测试人员可以准确地找出所有辐射问题的来源。设计工程师可以在采取了相应的解决措施之后,对器件进行重新测试并立即量化出校正设计后的效果。

图1:扩频时钟功能

  扫描系统由一个扫描仪、小型适配器、一个客户提供的频谱分析仪和运行扫描系统软件的PC组成。台式扫描仪包括2,436条回路,可产生1,218个间隔为7.5mm的磁场探针,形成一个电子开关阵列并提供高达3.75mm的分辨率。系统工作频率范围为50kHz至4GHz,通过可选的软件密钥启用。

  这样,用户就可以自行对设计进行测试,而不必依赖另外一个部门、测试工程师或进行耗时的场外测试。工程师甚至可以在诊断一个间歇故障之后,对设计进行更改,很快再进行测试。测试的结果可以对设计更改的影响进行精确的验证。

  借助扫描系统,电路板设计工程师可以预先测试和解决电磁兼容问题,从而避免产生非预期的一致性测试结果。扫描仪的诊断功能可以帮助设计团队将辐射测试时间缩短两个数量级以上。

EMI近场辐射特性:SSCG示例

  某一大型半导体厂商在解串器的并行总线上实现了SSCG功能。SSCG功能能够通过将辐射峰值能量扩展到更宽的频带上来减少辐射。如下面的图1所示,频率变化发生在额定时钟中心频率(中心扩频调制)附近,扩展的频谱为正或负1.0%(fdev)。在接收器并行总线端,输出以千赫兹(fmod)的调制速率随时间调制时钟频率和数据频谱。定制的串行解串器芯片组的目标客户是要求所安装电子设备具有低EMI辐射特性的汽车厂商。

  该公司期望用令人信服的量化证据来向汽车厂商说明SSCG功能可以有效降低EMI辐射。为了实现这个目标,设计团队首先在SSCG功能为“关”的情况下将待测器件(DUT)放其内部扫描仪上,加电,然后在PC中捕获辐射特性。为了进行有效的对比,在打开SSCG功能的情况下,对同一待测器件进行了扫描。

  极近场扫描系统完成了空间和频谱扫描后显示并生成了以下辐射特性图。需注意的是,扫描结果叠加在Gerber设计文件上,因此这样对结果进行分析可以立即确定待测器件中的具体辐射体。

图2显示了SSCG功能为“关”时待测器件的辐射特性

图3为SSCG功能为“开”时待测设备辐射的空间和频谱(幅度与频率)特性。通过对比,可以发现辐射已经显着减少

  对测试结果进行比较之后,设计团队发现由于使用了SSCG功能导致电磁辐射显着减少。汽车电子工程师最大的挑战在于减少EMI辐射。客户支持团队每次向汽车厂商客户展示这些结果时,他们普遍都表现出了极大的兴趣。任何降低EMI的功能(此案例中为SSCG功能)都可以缩短上市时间、降低屏蔽和成本支出。


EMI近场辐射特性:新一代串行解串器例子

  这是同一家半导体供应商的第二个例子,该公司开发了一个通过串行解串器进行点到点传输的第二代芯片组解决方案。在第三代芯片组中,设计团队采用了一种不同的技术并升级了传输能力。他们将双向控制通道一起嵌入高速串行链路中,从而实现了双向传输(全双工)。

  为了量化比较半双工解串器与新一代全双工设计的辐射特性,设计团队再次使用了内部的EMI极近场扫描仪。他们将原来的半双工板放在扫描仪上,进行基线测量。对待测器件加电后,他们在PC上激活了扫描仪。


图4:半双工和全双工串行解串器器件的EMI扫描的测试环境

  采用同样的测试设置,设计团队用新一代全双工芯片组板替代了基线板,同时也针对每一条特性保持了同样的规格。如上文所述,需注意的是,空间扫描叠加在每次生成的Gerber设计文件上,以帮助工程师可以确定任何存在的辐射源。



评论

技术专区